要闻动态
当前位置:  首页 要闻动态 学术活动 研究院论坛:NO.61 Values of Personalization in O2O On-Demand Delivery with Crowd-Sourced Drivers
研究院论坛:NO.61 Values of Personalization in O2O On-Demand Delivery with Crowd-Sourced Drivers
2022年03月10日

报告题目:Values of Personalization in O2O On-Demand Delivery with Crowd-Sourced Drivers

告 人:代宏砚

报告时间:2022310日(周),15:40-17:00

报告地点:腾讯会议会议ID741 291 383

主办单位:现代供应链管理研究院

【报告人简介】

代宏砚,现任中央财经大学商学院教授,博士毕业于香港科技大学,杜克大学和南洋理工大学访问学者。目前的研究兴趣包括共享经济、O2O物流网络设计、数据驱动的优化等。在EJORIJPEIJPRAOR等领域内高层次期刊上发表了20多篇论文。主持包括国家自然科学基金重大研究计划在内的多项国家级、省级项目,并参与京东到家、国家电网、西门子等知名企业的项目。担任中国物流学会的研究员、国家自然科学基金委员会的评审专家,以及10多个国际期刊的审稿人。

 

【摘要】

In O2O (Online-to-Offline) on-demand services, customers place orders online and the O2O platform delivers products from the stores to the customers within one hour. The platform usually hires crowd-sourced drivers as a cost-effective option due to their flexibility. However, the delivery speed and delivery capacity of the crowd-sourced drivers vary a lot. This service inconsistency brings challenges in precisely matching the delivery supply and customer demand, which may significantly decrease the delivery efficiency. This paper aims to address the challenges by proposing a personalized dispatch model, which integrates both the order and drivers characteristics during the order assignment and routing decision making process. To achieve this, two machine learning-based models are proposed to forecast the individual drivers delivery speed in real time and customize the drivers delivery capacity dynamically, in order to develop a portrait of each driver’s behavior. Next, a personalized O2O order assignment and routing model is proposed with integration of the two portrait models. Furthermore, we validate our model with a real dataset of one mainstream O2O platform in China with 1230624 orders. Through comparison with actual routing decisions by the drivers, we show that the proposed personalized model can reduce the average delay by 21.60%. We also run a comprehensive simulation to show the improvement in terms of on-time rate and delay time, brought by each personalization characteristics, viz, the personalized delivery speed and the customized delivery capacity. The theoretical and numerical results can shed light on the delivery management of the O2O on-demand services.

【参与方式】

腾讯会议  会议ID741 291 383

 

获取更多信息,请扫描下方二维码加入微信群,本群会作为长期供应链管理与科学领域学术交流群,直播结束后可在群内进行交流讨论。本群也会不定时分享相关学术资源及高水平学术讲座链接,欢迎各位老师同学加入微信群一起探讨学术问题。

微信群.jpg 


联系我们
  • 地址:中国·辽宁·大连市沙河口区尖山街217号
  • 邮编:116025
  • 电话:(+86)0411-84713573
  • 电子邮箱:isca_2016@dufe.edu.cn
现代供应链管理研究院